Home Manufacturing Additive Manufactoring Leveling Up Additive Manufacturing with Layered Tetrahedral Meshing

Leveling Up Additive Manufacturing with Layered Tetrahedral Meshing

Setting Things Straight with Simulation, Layer by Layer

Predicting the right deformation is a very important step to correct the distortion of a component. During distortion compensation, the distortion of a component is inverted with a negative value using a given scale factor. An iterative process is also typically used because parts can respond non-linearly. While running the distortion compensation, the displacements calculated in the layered mesh are mapped onto a target geometry with a faceted mesh. While the mapping algorithm is independent of the layered mesh used, LTM is ideal for capturing all component features and does not miss regions that could lead to mapping errors.

As AM becomes more established as a serial production technology, serial numbers and company logos are seen more frequently on components. While these numbers and logos are mostly added later for product branding and quality control, they would not necessarily have an impact on the stress and distortion generated during the build process. However, for thin regions of the components where stress concentration could happen around the labels, LTM could be used to capture defects surrounding these areas.

LTM represents the best meshing option in end-to-end simulation workflows in which AM residual stresses are mapped in connection with a new analysis system for part qualification. For this type of workflow — and to avoid transferring data between dissimilar meshes, i.e., from Cartesian to tetrahedral elements — LTM can be applied to mesh the component for different steps of the product development chain. LTM is also an effective method in which to consider powder representation because the contact between the part and its components can be easily assigned. It also aids in predicting regions of the part that will exceed a maximum elongation, i.e., where only a very fine Cartesian mesh would typically be used. Similarly, LTM is preferred for simulating heat treatment and hot isostatic pressing processes because thermal and pressure conditions can be directly applied to the element faces. In this way, LTM prevents numerical errors and extrapolations that may occur using Cartesian elements.

With its ability to produce high-fidelity results in a quick, neat, and accurate manner, LTM is a preferable choice when working with complex geometries. In the same manner, LTM works well for thin or fine features with its ability to reduce errors and provide an accurate mesh representation while also supporting sustainability by reducing wasted material, energy, and cost. As digital transformation continues to impact the manufacturing industry and more companies explore AM, LTM offers an easy-to-use implementation that democratizes simulation for all users — from beginner to advanced.

Learn more about Ansys additive manufacturing simulation solutions.