Home Engineering Collected CFD works in Chemical Engineering

Collected CFD works in Chemical Engineering

The rise in computational capacity has allowed improved modeling and simulation capabilities for chemical processes. Computational fluid dynamics (CFD) is a useful tool to study the performance of a process following geometrical and operational modifications. CFD is suitable for identifying hydrodynamics inside processes with complex geometries where chemical reactions and heat and mass transfers occur. CFD has received much attention from researchers in recent years. This book includes 11 manuscripts published in various MDPI journals.

Abstract Chapter 1: Hydrogen could be a promising source fuel, and is often considered as a clean energy carrier as it can be produced by ethanol. The use of ethanol presents several advantages, because it is a renewable feedstock, easy to transport, biodegradable, has low toxicity, contains high hydrogen content, and easy to store and handle. Reforming ethanol steam occurs at relatively lower temperatures, compared with other hydrocarbon fuels, and has been widely studied due to the high yield provided for the formation of hydrogen. A new computational fluid dynamics (CFD) simulation model of the ethanol steam reforming (ESR) has been developed in this work. The reforming system model is composed from an ethanol burner and a catalytic bed reactor. The liquid ethanol is burned inside the firebox, then the radiative heat flux from burner is transferred to the catalytic bed reactor for transforming the ethanol steam mixture to hydrogen and carbon dioxide. The proposed computational model is composed of two phases—Simulation of ethanol burner by using Fire Dynamics Simulator software (FDS) (version 5.0) and a multi-physics simulation of the steam reforming process occurring inside the reformer. COMSOL multi-physics software (version 4.3b) has been applied in this work. It solves simultaneously the fluid flow, heat transfer, diffusion with chemical reaction kinetics equations, and structural analysis. It is shown that the heat release rate produced by the ethanol burner, can provide the necessary heat flux required for maintaining the reforming process. It has been found out that the mass fractions of the hydrogen and carbon dioxide mass fraction are increased along the reformer axis. The hydrogen mass fraction increases with enhancing the radiation heat flux. It was shown that Von Mises stresses increases with heat fluxes. Safety issues concerning the structural integrity of the steel jacket are also addressed. This work clearly shows that by using ethanol which has low temperature conversion, the decrease in structural strength of the steel tube is low. The numerical results clearly indicate that under normal conditions of the ethanol reforming (The temperature of the steel is about 600 °C or 1112 °F), the rupture time of the HK-40 steel alloy increases considerably. For this case the rupture time is greater than 100,000 h (more than 11.4 years).
[1] CFD Simulation of Ethanol Steam Reforming System for Hydrogen Production. ChemEngineering 2018, 2, 34. https://lnkd.in/dffFk4fs

Abstract Chapter 2: Different kinds of explosions are driven by the internal energy accumulated in compressed gas or superheated liquid. A well-known example of such an explosion is the burst of a vessel with pressure-liquefied substance, known as Boiling Liquid Expanding Vapor Explosion (BLEVE). Hot BLEVE accident is caused mainly by direct heating (pool fire or jet fire) of the steel casing at the vapor side of the tank to temperatures in excess of 400 °C. Thermal insulation around the tank can significantly reduce and retard the excessive heating of the tank casings in a fire. This will allow fire fighters enough time to reach the accident location and to cool the LPG (Liquid Petroleum Gas) tank to avoid the BLEVE, to extinguish the fire or to evacuate the people in the vicinity of the accident. The proposed algorithm addresses several aspects of the BLEVE accident and its mitigation: Computational Fluid Dynamic (CFD) Simulation of jet fire by using fire dynamics simulator (FDS) software by using large eddy simulation (LES); calculation of the convective and radiative heat fluxes by using the impinging jet fire theory; performing thermochemical and heat transfer analysis on the glass-woven vinyl ester coating of the vessel by using FDS software (version 5); and COMSOL Multiphysics (version 4.3b) during the heating phase of composite and calculation of the time period required to evaporate the liquefied propane by using the first and second laws of thermodynamics.
[2] CFD Simulation and Mitigation with Boiling Liquid Expanding Vapor Explosion (BLEVE) Caused by Jet Fire. ChemEngineering 2019, 3, 1. https://www.mdpi.com/2305-7084/3/1/1

Abstract Chapter 3: Levulinic acid (LA) has been ranked as one of the “Top 10” building blocks for future bio-refineries as proposed by the US Department of Energy. It is considered one of the most important platform molecules for the production of fine chemicals and fuels based on its compatibility with existing processes, market economics, and industrial ability to serve as a platform for the synthesis of important derivatives. Hydrogenation of LA to produce γ-valerolactone (GVL) is an active area of research due to the potential of GVL to be used as a biofuel in its own right and for its subsequent transformation into hydrocarbon fuels. This paper contains a new design for a simple, cost effective, and safe hydrogenation reactor for the transformation of levulinic acid to γ-valerolactone (GVL) by utilizing high boiling point organic fluid. The hydrogenation reactor is composed of a heating source—organic fluid (called “DOWTHERM A” or “thermex”) and the catalytic reactor. The advantages of high boiling temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept more suitable and safer (water coming in contact with liquid metal is well understood in the metallurgical industry to be a steam explosion hazard) for heating the hydrogenation reactor. COMSOL multi-physics software version 4.3b was applied in this work and simultaneously solves the continuity, Navier-Stokes (fluid flow), energy (heat transfer), and diffusion with chemical reaction kinetics equations. It was shown that the heat flux supplied by the DOWTHERM A organic fluid could provide the necessary heat flux required for maintaining the hydrogenation process. It was found that the mass fractions of hydrogen and levulinic acid decreased along the reactor axis. The GVL mass fraction increased along the reactor axis.
[3] CFD Design of Hydrogenation Reactor for Transformation of Levulinic Acid to γ-Valerolactone (GVL) by using High Boiling Point Organic Fluids. ChemEngineering 2019, 3, 32. https://lnkd.in/daHnvenT

Abstract Chapter 4: An advanced algorithm has been developed in order to analyze the performance of re-boiling process of crude oil flowing inside reboilers tubes. The proposed model is composed from Heptane fire heater and a tube array. The heat flux produced from burner is transferred to the crude oil flowing inside the tube. The computational model is composed of two phases—Simulation of fire by using Fire Dynamics Simulator software (FDS) version 5.0 and then a nucleate boiling computation of the crude oil. FDS code is formulated based on CFD (Computational Fluid Dynamics) of fire heater. The thermo-physical properties (such as: thermal conductivity, heat capacity, surface tension, viscosity) of the crude oil were estimated by using empirical correlations. The thermal heat transfer to evaporating two-phase crude oil mixture occur by bubble generation at the wall (nucleate boiling) has been calculated by using Chen correlation. It has been assumed that the overall convective heat transfer coefficient is composed from the nucleate boiling convective coefficient and the forced turbulent convective coefficient. The former is calculated by Forster Zuber empirical equation. The latter is computed from the Dittus-Boelter relationship. In order to validate the nucleate boiling heat transfer coefficient, a comparison has been performed to nucleate boiling convective coefficient obtained by Mostinski equation. The relative error between the nucleate boiling convective heat-transfer coefficients is 10.5%. The FDS numerical solution has been carried out by using Large Eddy Simulation (LES) method. This work has been further extended to include also the structural integrity aspects of the reboiler metal pipe by using COMSOL Multiphysics software. It was found out, that the calculated stress is less than the ultimate tensile strength of the AISI 310 Steel alloy.
[4] CFD Simulation of Forced Recirculating Fired Heated Reboilers. Processes 2020, 8, 145. https://lnkd.in/de3CuY_J

Abstract Chapter 5: Pet-coke (petroleum coke) is identified as a carbon-rich and black-colored solid. Despite the environmental risks posed by the exploitation of pet-coke, it is mostly applied as a boiling and combusting fuel in power generation, and cement production plants. It is considered as a promising replacement for coal power plants because of its higher heating value, carbon content, and low ash. A computational fluid dynamics (CFD) computational model of methane steam reforming was developed in this research. The hydrogen production system is composed from a pet-coke burner and a catalyst bed reactor. The heat released, produced by the pet-coke combustion, was utilized for convective and radiative heating of the catalyst bed for maintaining the steam reforming reaction of methane into hydrogen and carbon monoxide. This computational algorithm is composed of three steps—simulation of pet-coke combustion by using fire dynamics simulator (FDS) software coupled with thermal structural analysis of the burner lining and a multiphysics computation of the methane steam reforming (MSR) process taking place inside the catalyst bed. The structural analysis of the burner lining was carried out by coupling the solutions of heat conduction equation, Darcy porous media steam flow equation, and structural mechanics equation. In order to validate the gaseous temperature and carbon monoxide mole fraction obtained by FDS calculation, a comparison was carried out with the literature results. The maximal temperature obtained from the combustion simulation was about 1440 °C. The calculated temperature is similar to the temperature reported, which is also close to 1400 °C. The maximal carbon dioxide mole fraction reading was 15.0%. COMSOL multi-physics software solves simultaneously the catalyst media fluid flow, heat, and mass with chemical reaction kinetics transport equations of the methane steam reforming catalyst bed reactor. The methane conversion is about 27%. The steam and the methane decay along the catalyst bed reactor at the same slope. Similar values have been reported in the literature for MSR temperature of 510 °C. The hydrogen mass fraction was increased by 98.4%.
[5] Multiphysics Design of Pet-Coke Burner and Hydrogen Production by Applying Methane Steam Reforming System. Clean Technol. 2021, 3, 260-287. https://lnkd.in/dZKBgmcC

Abstract Chapter 6: Thermodynamic analysis of Organic Rankine Cycle (ORC) was performed in this work. The Petroleum Coke burner provided the required heat flux for the Butane Boiler. The simulation of pet-coke combustion was carried out by using Fire Dynamics Simulator software (FDS) version 5.0. Validation of the FDS calculation results was carried out by comparing the temperature of the gaseous mixture and CO2 mole fractions to the literature. It was discovered that they are similar to those reported in the literature. An Artificial Intelligence (AI) time forecasting analysis was performed on this work. The AI algorithm was applied to the temperature and soot sensor readings. Two Python libraries were applied in order to forecast the time behaviour of the thermocouple readings: Statistical model—ARIMA (Auto-Regressive Integrated Moving Average) and KERAS—deep learning library. ARIMA is a class of model that captures a suite of different standard temporal structures in time series data. Keras is a python library applied for deep learning and runs on top of Tensor-Flow. It has been developed in order to perform deep learning models as fast and easily as possible for research and development. The model accuracy and model loss plot shows comparable performance (train and test). Butane has been employed as a working fluid in the ORC. Butane is considered one of the best pure fluids in terms of exergy efficiency. It has low specific radiative forcing (RF) compared to Ethane and Propane. Moreover, it has zero ozone depletion potential and low Global Warming Potential. It is considered flammable, highly stable and non-corrosive. The thermodynamic properties of Butane needed to evaluate the heat rate and the power were calculated by applying the ASIMPTOTE online thermodynamic calculator. It was shown that the calculated net power of the ORC cycle is similar to the net power reported in the literature (relative error of 4.8%). The proposed ORC energetic system obeys the first and second laws of thermodynamics. The thermal efficiency of the cycle is 20.4%.
[6] Thermodynamic Design of Organic Rankine Cycle (ORC) Based on Petroleum Coke Combustion. ChemEngineering 2021, 5, 37. https://lnkd.in/dX7czfm7

Abstract Chapter 7: FAME (biodiesel) is an alternative fuel that can be produced from vegetable oils. There is growing interest in the research and development of renewable energy sources. A possible solution is a biofuel usable in compression-ignition engines (diesel engines) produced from biomass rich in fats and oils. This paper contains a new and safer design of an esterification reactor for producing FAME (biodiesel) by utilizing high boiling point fluid (called phenyl-naphthalene). CFD simulation of biodiesel production by using methyl imidazolium hydrogen sulfate ionic liquid has been carried out. Ionic liquids (ILs) are composed of anions and cations that exist as liquids at relatively low temperatures. They have many advantages, such as chemical and thermal stability, low flammability, and low vapor pressures. In this work, the ionic liquids have been applied in organic reactions as solvents and catalysts of the esterification reaction. The great qualities of high boiling temperature fluids, along with advances in the oil and gas industries, make the organic concept more suitable and safer (water coming into contact with liquid metal may cause a steam explosion hazard) for heating the esterification reactor. The COMSOL Multiphysics code has been employed and simultaneously solves the continuity, fluid flow, heat transfer, and diffusion with chemical reaction kinetics equations. It was shown that the heat flux could provide the necessary heat flux required for maintaining the esterification process. It was found that the mass fractions of methanol and oleic acid decrease along the reactor axis. The FAME mass fraction increased along the reactor axis. The maximal biodiesel yield obtained in the esterification reactor was 86%. This value is very similar to the experimental results obtained by Elsheikh et al.
[7] Thermal Hydraulics and Thermochemical Design of Fatty Acid Methyl Ester (Biodiesel) Esterification Reactor by Heating with High Boiling Point Phenyl-Naphthalene Liquid. Fluids 2022, 7, 93. https://lnkd.in/d47S9GRi

Abstract Chapter 8: Large Eddy Simulation (LES) and Thermodynamic study have been performed on Organic Rankine Cycle (ORC) components (boiler, evaporator, turbine, pump, and condenser). The petroleum Coke burner provided the heat flux needed for the butane evaporator. High boiling point fluid (called phenyl-naphthalene) has been applied in the ORC. The high boiling liquid is safer (steam explosion hazard may be prevented) for heating the butane stream. It has best exergy efficiency. It is non-corrosive, highly stable, and flammable. Fire Dynamics Simulator software (FDS) has been applied in order to simulate the pet-coke combustion and calculate the Heat Release Rate (HRR). The maximal temperature of the 2-Phenylnaphthalene flowing in the boiler is much less than its boiling temperature (600 K). Enthalpy, entropy and specific volume required for evaluating the heat rates and the power have been computed by employing the THERMOPTIM thermodynamic code. The proposed design ORC is safer. This is because the flammable butane is separated from the flame produced in the petroleum coke burner. The proposed ORC obeys the two fundamental laws of thermodynamics. The calculated net power is 3260 kW. It is in good agreement with net power is reported in the literature. The thermal efficiency of the ORC is 18.0%.
[8] Large Eddy Simulation and Thermodynamic Design of the Organic Rankine Cycle Based on Butane Working Fluid and the High-Boiling-Point Phenyl Naphthalene Liquid Heating System. Entropy 2022, 24, 1461. https://lnkd.in/dZrkKhaK

Abstract Chapter 9: Inhalational anesthesia is supplied through an assisted ventilation system. It is mostly composed of xenon or nitrous oxide, halogenated hydrocarbons (HHCs), and oxygen. In order to reduce costs of the anesthesia compounds, the remaining anesthetics present in exhalation are recycled and reused, in order to minimize the amount of fresh anesthesia. An alkali hydroxide mixture (called soda lime) is employed in order to remove CO2 from the exhalation. However toxic compounds may be formed during the reaction of soda lime with halogenated hydrocarbons. Ionic liquids (ILs) have several advantages such as non-volatility, functionality, high carbon solubility, and low energy requirements for regeneration. In the framework of this research, carbon dioxide removal with ionic liquids has been numerically studied. COMSOL multi-physics finite element software has been applied. It solves the continuity, fluid flow, and diffusion equations. A new algorithm has been developed for calculating the infrared (IR) radiation absorption of CO2. Its absorption coefficient has wavelength-dependent properties. The gaseous absorption coefficient has been calculated by using HITRAN spectral database. It has been found that the CO2 is absorbed almost completely by the 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]) ionic liquid after a period of 1000 s. It has been shown that the absorption coefficient of CO2 can be neglected in the interval below 1.565 μm, and then at 1.6 μm, it increases to the same order as that for CO. Thus, it is possible to detect CO2 by applying a laser diode which is capable to transmit IR radiation at a wavelength of 1.6 μm. This time period is a function of the diffusion coefficient of the CO2 in the membrane and in the ionic liquid.
[9] Numerical Study of CO2 Removal from Inhalational Anesthesia System by Using Gas-Ionic Liquid Membrane. ChemEngineering 2023, 7, 60. https://lnkd.in/dqY7Fu9w

Abstract Chapter 10: Hydrogen sulfide (H2S) is considered a toxic and corrosive gas, commonly found in natural gas, crude oil, and other fossil fuels. This corrosive gas may lead to stress corrosion cracking (SCC). This phenomenon is caused by the combined influence of tensile stress and a corrosive environment. This may lead to the sudden failure of normally ductile metal alloys, especially at an elevated temperature. Desulfurization is the process of removing H2S from these fuels to reduce their harmful environmental and health impacts. Ionic liquids (ILs) have shown great potential for application as liquid absorbents for H2S extraction because of their advantages such as non-volatility, functionality, high carbon solubility and low energy requirements for regeneration. The proposed hydrogen sulfide extraction system consists of a tube, membrane and shell. 1-ethyl-3-methylimidazolium (emim)-based ionic liquids with bis-(trifluoromethyl) sulfonylimide (NTf2) anion has been selected due to its high H2S diffusion coefficient. Functionalized graphene oxide (GO) advanced membranes have been employed in this design. In this research, H2S extraction with ionic liquids has been numerically studied. The COMSOL finite element and multi-physics code has been employed to solve the continuity, turbulent fluid flow (k-ε model), and transient diffusion equations. For small time periods, there is sharp gradient in H2S concentration profile inside the shell section. This is because the diffusion coefficient of H2S in the ionic liquid is very small and the shell section is much thicker than the membrane. It has been determined that H2S is absorbed almost completely by ionic liquids after a time period of 30,000 s.
[10] CFD Simulation of Hydrogen Sulfide (H2S) Desulfurization Using Ionic Liquids and Graphene Oxide Membrane. Fuels 2023, 4, 363-375. https://lnkd.in/dniBwT98

Abstract Chapter 11: Olefins are crucial building blocks for petrochemical industry, serving as raw materials for the production of various products such as plastics, synthetic fibers, detergents, solvents, and other chemicals. In FCC, heavy petroleum feedstocks are injected into a catalytic cracking unit, where they are mixed with a catalyst. The catalyst aids in breaking down the large hydrocarbon molecules into smaller fragments, including olefins like Propylene and Ethylene. These polymerization reactions occur at high temperatures. They demand that heat removal occurs as quickly as possible in order to control the reactor temperature and to avoid “hot spots” in the Regenerator or localized oxidation reactions (and to avoid creep rupture of the regenerator steel cladding). The cooling of the regenerator cladding surface can be achieved by impinging water droplets (spray), ejected from a spray nozzle. Spray cooling can provide uniform cooling and handle high heat fluxes in both a single phase and two phases. This research provides a thermal hydraulic design of regenerator spray cooling systems. In the framework of this research, Fire Dynamics Simulator (FDS) software was applied in order to simulate the temperature field and the water vapor mass fraction. A COMSOL Multiphysics finite element code was used in order to calculate the temperature field inside the regenerator cladding. The calculated surface temperatures and heat transfer convective coefficient, obtained using FDS software, were validated successfully against COMSOL numerical results and previous results in the literature. The numerical simulations were carried out for two cases. The first case was carried out at a distance of 0.5 m, and the second case was carried out at a distance of 0.2 m. A grid sensitivity study was carried out on the FDS model. Numerical integrations were carried out over time in order to calculate the average temperatures. The difference between these four average temperatures, calculated by applying different grids, is less than 7.4%. The calculated surface temperatures and heat transfer convective coefficient were validated successfully against COMSOL numerical results and previous research. It was shown that the calculated temperatures decrease in the second case. The water spray system managed to cool the steel wall more effectively as the water spray system approaches the steel cladding.
[11] Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator. Dynamics 2023, 3, 737-749. https://lnkd.in/d9hZxHEj.

This book is available in the following web site:

https://www.researchgate.net/publication/376481009_Collected_CFD_works_in_Chemical_Engineering_by_Dr_Alon_Davidy_in_memory_of_David_Davidy